3.6.47 \(\int \frac {1}{\sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx\) [547]

Optimal. Leaf size=123 \[ -\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} (c-d) f}+\frac {2 \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} (c-d) \sqrt {c+d} f} \]

[Out]

-arctanh(1/2*cos(f*x+e)*a^(1/2)*2^(1/2)/(a+a*sin(f*x+e))^(1/2))*2^(1/2)/(c-d)/f/a^(1/2)+2*arctanh(cos(f*x+e)*a
^(1/2)*d^(1/2)/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))*d^(1/2)/(c-d)/f/a^(1/2)/(c+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2859, 2728, 212, 2852, 214} \begin {gather*} \frac {2 \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f (c-d) \sqrt {c+d}}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{\sqrt {a} f (c-d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])),x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)*f)) + (2*Sqrt[
d]*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[a]*(c - d)*Sqrt[c + d
]*f)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2859

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[
b/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] - Dist[d/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c +
d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \, dx &=\frac {\int \frac {1}{\sqrt {a+a \sin (e+f x)}} \, dx}{c-d}-\frac {d \int \frac {\sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{a (c-d)}\\ &=-\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{(c-d) f}+\frac {(2 d) \text {Subst}\left (\int \frac {1}{a c+a d-d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{(c-d) f}\\ &=-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} (c-d) f}+\frac {2 \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{\sqrt {a} (c-d) \sqrt {c+d} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.30, size = 215, normalized size = 1.75 \begin {gather*} \frac {\left ((2+2 i) (-1)^{3/4} \sqrt {c+d} \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right )+\sqrt {d} \left (\log \left (\sec ^2\left (\frac {1}{4} (e+f x)\right ) \left (\sqrt {c+d}+\sqrt {d} \cos \left (\frac {1}{2} (e+f x)\right )-\sqrt {d} \sin \left (\frac {1}{2} (e+f x)\right )\right )\right )-\log \left (\sec ^2\left (\frac {1}{4} (e+f x)\right ) \left (\sqrt {c+d}-\sqrt {d} \cos \left (\frac {1}{2} (e+f x)\right )+\sqrt {d} \sin \left (\frac {1}{2} (e+f x)\right )\right )\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )}{(c-d) \sqrt {c+d} f \sqrt {a (1+\sin (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin[e + f*x])),x]

[Out]

(((2 + 2*I)*(-1)^(3/4)*Sqrt[c + d]*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x)/4])] + Sqrt[d]*(Log[Sec[
(e + f*x)/4]^2*(Sqrt[c + d] + Sqrt[d]*Cos[(e + f*x)/2] - Sqrt[d]*Sin[(e + f*x)/2])] - Log[Sec[(e + f*x)/4]^2*(
Sqrt[c + d] - Sqrt[d]*Cos[(e + f*x)/2] + Sqrt[d]*Sin[(e + f*x)/2])]))*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]))/(
(c - d)*Sqrt[c + d]*f*Sqrt[a*(1 + Sin[e + f*x])])

________________________________________________________________________________________

Maple [A]
time = 5.18, size = 131, normalized size = 1.07

method result size
default \(-\frac {\left (1+\sin \left (f x +e \right )\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (-2 d \arctanh \left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) a^{\frac {3}{2}}+\sqrt {2}\, \arctanh \left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \sqrt {a \left (c +d \right ) d}\right )}{\left (c -d \right ) \sqrt {a \left (c +d \right ) d}\, a^{\frac {3}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(131\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

-(1+sin(f*x+e))*(-a*(sin(f*x+e)-1))^(1/2)*(-2*d*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*a^(3/2)
+2^(1/2)*arctanh(1/2*(-a*(sin(f*x+e)-1))^(1/2)*2^(1/2)/a^(1/2))*a*(a*(c+d)*d)^(1/2))/(c-d)/(a*(c+d)*d)^(1/2)/a
^(3/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) + c)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 215 vs. \(2 (104) = 208\).
time = 0.43, size = 727, normalized size = 5.91 \begin {gather*} \left [-\frac {\sqrt {\frac {d}{a c + a d}} \log \left (\frac {d^{2} \cos \left (f x + e\right )^{3} - {\left (6 \, c d + 7 \, d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} - 4 \, {\left ({\left (c d + d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 4 \, c d - 3 \, d^{2} - {\left (c^{2} + 3 \, c d + 2 \, d^{2}\right )} \cos \left (f x + e\right ) + {\left (c^{2} + 4 \, c d + 3 \, d^{2} + {\left (c d + d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {\frac {d}{a c + a d}} - {\left (c^{2} + 8 \, c d + 9 \, d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} + 2 \, {\left (3 \, c d + 4 \, d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{d^{2} \cos \left (f x + e\right )^{3} + {\left (2 \, c d + d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} - {\left (c^{2} + d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right )^{2} - 2 \, c d \cos \left (f x + e\right ) - c^{2} - 2 \, c d - d^{2}\right )} \sin \left (f x + e\right )}\right ) + \frac {\sqrt {2} \log \left (-\frac {\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) - 2\right )} \sin \left (f x + e\right ) + \frac {2 \, \sqrt {2} \sqrt {a \sin \left (f x + e\right ) + a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (f x + e\right ) + 2}{\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right )}{\sqrt {a}}}{2 \, {\left (c - d\right )} f}, \frac {2 \, \sqrt {-\frac {d}{a c + a d}} \arctan \left (\frac {\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) - c - 2 \, d\right )} \sqrt {-\frac {d}{a c + a d}}}{2 \, d \cos \left (f x + e\right )}\right ) - \frac {\sqrt {2} \log \left (-\frac {\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) - 2\right )} \sin \left (f x + e\right ) + \frac {2 \, \sqrt {2} \sqrt {a \sin \left (f x + e\right ) + a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (f x + e\right ) + 2}{\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right )}{\sqrt {a}}}{2 \, {\left (c - d\right )} f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(d/(a*c + a*d))*log((d^2*cos(f*x + e)^3 - (6*c*d + 7*d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - 4*((
c*d + d^2)*cos(f*x + e)^2 - c^2 - 4*c*d - 3*d^2 - (c^2 + 3*c*d + 2*d^2)*cos(f*x + e) + (c^2 + 4*c*d + 3*d^2 +
(c*d + d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d/(a*c + a*d)) - (c^2 + 8*c*d + 9*d^2)*c
os(f*x + e) + (d^2*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 + 2*(3*c*d + 4*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*cos
(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^
2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e))) + sqrt(2)*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)
*sin(f*x + e) + 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e)
+ 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqrt(a))/((c - d)*f), 1/2*(2*sqrt(
-d/(a*c + a*d))*arctan(1/2*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-d/(a*c + a*d))/(d*cos(f*x
 + e))) - sqrt(2)*log(-(cos(f*x + e)^2 - (cos(f*x + e) - 2)*sin(f*x + e) + 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*
(cos(f*x + e) - sin(f*x + e) + 1)/sqrt(a) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 - (cos(f*x + e) + 2)*sin(f*x +
 e) - cos(f*x + e) - 2))/sqrt(a))/((c - d)*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \left (c + d \sin {\left (e + f x \right )}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e)),x)

[Out]

Integral(1/(sqrt(a*(sin(e + f*x) + 1))*(c + d*sin(e + f*x))), x)

________________________________________________________________________________________

Giac [A]
time = 0.51, size = 206, normalized size = 1.67 \begin {gather*} \frac {\sqrt {2} {\left (\frac {2 \, \sqrt {2} d \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right )}{\sqrt {-c d - d^{2}} {\left (c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )}} + \frac {\log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}{c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}{c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )}}{2 \, \sqrt {a} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

1/2*sqrt(2)*(2*sqrt(2)*d*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2*e)/sqrt(-c*d - d^2))/(sqrt(-c*d - d^2)*(
c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))) + log(sin(-1/4*pi + 1/2*f*x +
1/2*e) + 1)/(c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) - log(-sin(-1/4*pi
 + 1/2*f*x + 1/2*e) + 1)/(c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))))/(sqr
t(a)*f)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {a+a\,\sin \left (e+f\,x\right )}\,\left (c+d\,\sin \left (e+f\,x\right )\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))),x)

[Out]

int(1/((a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))), x)

________________________________________________________________________________________